Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36.623
Filter
1.
Cell Metab ; 36(4): 745-761.e5, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38569471

ABSTRACT

There is considerable heterogeneity in the cardiometabolic abnormalities associated with obesity. We evaluated multi-organ system metabolic function in 20 adults with metabolically healthy obesity (MHO; normal fasting glucose and triglycerides, oral glucose tolerance, intrahepatic triglyceride content, and whole-body insulin sensitivity), 20 adults with metabolically unhealthy obesity (MUO; prediabetes, hepatic steatosis, and whole-body insulin resistance), and 15 adults who were metabolically healthy lean. Compared with MUO, people with MHO had (1) altered skeletal muscle biology (decreased ceramide content and increased expression of genes involved in BCAA catabolism and mitochondrial structure/function); (2) altered adipose tissue biology (decreased expression of genes involved in inflammation and extracellular matrix remodeling and increased expression of genes involved in lipogenesis); (3) lower 24-h plasma glucose, insulin, non-esterified fatty acids, and triglycerides; (4) higher plasma adiponectin and lower plasma PAI-1 concentrations; and (5) decreased oxidative stress. These findings provide a framework of potential mechanisms responsible for MHO and the metabolic heterogeneity of obesity. This study was registered at ClinicalTrials.gov (NCT02706262).


Subject(s)
Cardiovascular Diseases , Insulin Resistance , Metabolic Syndrome , Obesity, Metabolically Benign , Adult , Humans , Obesity/metabolism , Triglycerides , Metabolic Syndrome/metabolism , Body Mass Index , Risk Factors
2.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(2): 475-481, 2024 Mar 20.
Article in Chinese | MEDLINE | ID: mdl-38645850

ABSTRACT

Lipid droplets are dynamic multifunctional organelles composed of a neutral lipid core and a phospholipid monolayer membrane modified by a specific set of proteins. PAT family proteins are the most characteristic lipid droplet proteins, playing an important role in regulating lipid droplet structure, function, and metabolism. The biogenesis of lipid droplets involves neutral lipid synthesis and the nucleation, budding, and growth of the lipid droplets. Lipid droplets not only serve as the energy metabolism reserve of cells but also participate in intracellular signal transduction and the development of inflammation and tumor. Lipid droplets are closely connected to and interact with various organelles, regulating the division, the transportation, and the genetics of organelles. The complexity of lipid droplets biogenesis and the diversity of their functions may have provided a physiological basis for the pathogenesis and development of diseases, but further research is needed in order to better understand the relevant processes. Published findings have helped elucidate the association between lipid droplets and diseases, such as obesity, non-alcoholic fatty liver disease, neurodegenerative disease, cancer, and cardiovascular disease, but the relationship between lipid droplets and oral diseases has not been fully studied. Topics that warrant further research include the role and mechanisms of lipid droplets in the pathogenesis and development of oral diseases, the relationship between oral diseases and systemic diseases, and translation of the effect of lipid droplets on oral diseases into valuable clinical diagnostic and treatment methods. Herein, we reviewed the biogenesis and functions of lipid droplets and the progress in research concerning lipid droplets in oral diseases, including mouth neoplasms, periodontitis, and dental caries.


Subject(s)
Lipid Droplets , Humans , Lipid Droplets/metabolism , Lipid Metabolism , Mouth Diseases/metabolism , Obesity/metabolism
3.
Signal Transduct Target Ther ; 9(1): 103, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38664368

ABSTRACT

Obesity is one of the diseases with severe health consequences and rapidly increasing worldwide prevalence. Understanding the complex network of food intake and energy balance regulation is an essential prerequisite for pharmacological intervention with obesity. G protein-coupled receptors (GPCRs) are among the main modulators of metabolism and energy balance. They, for instance, regulate appetite and satiety in certain hypothalamic neurons, as well as glucose and lipid metabolism and hormone secretion from adipocytes. Mutations in some GPCRs, such as the melanocortin receptor type 4 (MC4R), have been associated with early-onset obesity. Here, we identified the adhesion GPCR latrophilin 1 (ADGRL1/LPHN1) as a member of the regulating network governing food intake and the maintenance of energy balance. Deficiency of the highly conserved receptor in mice results in increased food consumption and severe obesity, accompanied by dysregulation of glucose homeostasis. Consistently, we identified a partially inactivating mutation in human ADGRL1/LPHN1 in a patient suffering from obesity. Therefore, we propose that LPHN1 dysfunction is a risk factor for obesity development.


Subject(s)
Obesity , Receptors, G-Protein-Coupled , Receptors, Peptide , Obesity/genetics , Obesity/metabolism , Obesity/pathology , Humans , Animals , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Mice , Receptors, Peptide/genetics , Receptors, Peptide/metabolism , Energy Metabolism/genetics , Glucose/metabolism , Glucose/genetics
4.
Cardiovasc Diabetol ; 23(1): 138, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664801

ABSTRACT

BACKGROUND: Neutral cholesterol ester hydrolase 1 (NCEH1) plays a critical role in the regulation of cholesterol ester metabolism. Deficiency of NCHE1 accelerated atherosclerotic lesion formation in mice. Nonetheless, the role of NCEH1 in endothelial dysfunction associated with diabetes has not been explored. The present study sought to investigate whether NCEH1 improved endothelial function in diabetes, and the underlying mechanisms were explored. METHODS: The expression and activity of NCEH1 were determined in obese mice with high-fat diet (HFD) feeding, high glucose (HG)-induced mouse aortae or primary endothelial cells (ECs). Endothelium-dependent relaxation (EDR) in aortae response to acetylcholine (Ach) was measured. RESULTS: Results showed that the expression and activity of NCEH1 were lower in HFD-induced mouse aortae, HG-exposed mouse aortae ex vivo, and HG-incubated primary ECs. HG exposure reduced EDR in mouse aortae, which was exaggerated by endothelial-specific deficiency of NCEH1, whereas NCEH1 overexpression restored the impaired EDR. Similar results were observed in HFD mice. Mechanically, NCEH1 ameliorated the disrupted EDR by dissociating endothelial nitric oxide synthase (eNOS) from caveolin-1 (Cav-1), leading to eNOS activation and nitric oxide (NO) release. Moreover, interaction of NCEH1 with the E3 ubiquitin-protein ligase ZNRF1 led to the degradation of Cav-1 through the ubiquitination pathway. Silencing Cav-1 and upregulating ZNRF1 were sufficient to improve EDR of diabetic aortas, while overexpression of Cav-1 and downregulation of ZNRF1 abolished the effects of NCEH1 on endothelial function in diabetes. Thus, NCEH1 preserves endothelial function through increasing NO bioavailability secondary to the disruption of the Cav-1/eNOS complex in the endothelium of diabetic mice, depending on ZNRF1-induced ubiquitination of Cav-1. CONCLUSIONS: NCEH1 may be a promising candidate for the prevention and treatment of vascular complications of diabetes.


Subject(s)
Caveolin 1 , Diet, High-Fat , Endothelial Cells , Endothelium, Vascular , Mice, Inbred C57BL , Nitric Oxide Synthase Type III , Vasodilation , Animals , Endothelium, Vascular/physiopathology , Endothelium, Vascular/metabolism , Endothelium, Vascular/enzymology , Endothelium, Vascular/drug effects , Male , Nitric Oxide Synthase Type III/metabolism , Vasodilation/drug effects , Endothelial Cells/enzymology , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Caveolin 1/metabolism , Caveolin 1/deficiency , Caveolin 1/genetics , Cells, Cultured , Sterol Esterase/metabolism , Sterol Esterase/genetics , Mice, Knockout , Diabetes Mellitus, Experimental/enzymology , Diabetes Mellitus, Experimental/physiopathology , Signal Transduction , Mice , Aorta/enzymology , Aorta/physiopathology , Aorta/metabolism , Aorta/drug effects , Aorta/pathology , Nitric Oxide/metabolism , Obesity/enzymology , Obesity/physiopathology , Obesity/metabolism , Ubiquitination
5.
Cardiovasc Diabetol ; 23(1): 129, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622592

ABSTRACT

The long-term high-fat diet (HFD) can cause myocardial lipotoxicity, which is characterized pathologically by myocardial hypertrophy, fibrosis, and remodeling and clinically by cardiac dysfunction and heart failure in patients with obesity and diabetes. Circular RNAs (circRNAs), a novel class of noncoding RNA characterized by a ring formation through covalent bonds, play a critical role in various cardiovascular diseases. However, few studies have been conducted to investigate the role and mechanism of circRNA in myocardial lipotoxicity. Here, we found that circ_005077, formed by exon 2-4 of Crmp1, was significantly upregulated in the myocardium of an HFD-fed rat. Furthermore, we identified circ_005077 as a novel ferroptosis-related regulator that plays a role in palmitic acid (PA) and HFD-induced myocardial lipotoxicity in vitro and in vivo. Mechanically, circ_005077 interacted with Cyclophilin A (CyPA) and inhibited its degradation via the ubiquitination proteasome system (UBS), thus promoting the interaction between CyPA and p47phox to enhance the activity of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase responsible for ROS generation, subsequently inducing ferroptosis. Therefore, our results provide new insights into the mechanisms of myocardial lipotoxicity, potentially leading to the identification of a novel therapeutic target for the treatment of myocardial lipotoxicity in the future.


Subject(s)
Cyclophilin A , Diet, High-Fat , Ferroptosis , Animals , Rats , Cyclophilin A/metabolism , Myocardium/metabolism , Obesity/metabolism
6.
Mol Nutr Food Res ; 68(8): e2300720, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38581348

ABSTRACT

SCOPE: The global prevalence of obesity has significantly increased, presenting a major health challenge. High-fat diet (HFD)-induced obesity is closely related to the disease severity of psoriasis, but the mechanism is not fully understood. METHODS AND RESULTS: The study utilizes the HFD-induced obesity model along with an imiquimod (IMQ)-induced psoriasis-like mouse model (HFD-IMQ) to conduct transcriptomics and metabolomic analyses. HFD-induced obese mice exhibits more severe psoriasis-like lesions compared to normal diet (ND)-IMQ mice. The expression of genes of the IL-17 signaling pathway (IL-17A, IL-17F, S100A9, CCL20, CXCL1) is significantly upregulated, leading to an accumulation of T cells and neutrophils in the skin. Moreover, the study finds that there is an inhibition of the branched-chain amino acids (BCAAs) catabolism pathway, and the key gene branched-chain amino transferase 2 (Bcat2) is significantly downregulated, and the levels of leucine, isoleucine, and valine are elevated in the HFD-IMQ mice. Furthermore, the study finds that the peroxisome proliferator-activated receptor gamma (PPAR γ) is inhibited, while STAT3 activity is promoted in HFD-IMQ mice. CONCLUSION: HFD-induced obesity significantly amplifies IL-17 signaling and exacerbates psoriasis, with a potential role played by Bcat2-mediated BCAAs metabolism. The study suggests that BCAA catabolism and PPAR γ-STAT3 exacerbate inflammation in psoriasis with obesity.


Subject(s)
Amino Acids, Branched-Chain , Diet, High-Fat , Imiquimod , Inflammation , Mice, Inbred C57BL , Obesity , Psoriasis , Animals , Psoriasis/metabolism , Amino Acids, Branched-Chain/metabolism , Obesity/metabolism , Obesity/complications , Diet, High-Fat/adverse effects , Male , Inflammation/metabolism , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Interleukin-17/metabolism , Interleukin-17/genetics , Mice , PPAR gamma/metabolism , PPAR gamma/genetics , Disease Models, Animal , Mice, Obese , Signal Transduction , Transaminases/metabolism , Skin/metabolism
7.
Proc Natl Acad Sci U S A ; 121(16): e2318935121, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38588421

ABSTRACT

Glucose is required for generating heat during cold-induced nonshivering thermogenesis in adipose tissue, but the regulatory mechanism is largely unknown. CREBZF has emerged as a critical mechanism for metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as nonalcoholic fatty liver disease (NAFLD). We investigated the roles of CREBZF in the control of thermogenesis and energy metabolism. Glucose induces CREBZF in human white adipose tissue (WAT) and inguinal WAT (iWAT) in mice. Lys208 acetylation modulated by transacetylase CREB-binding protein/p300 and deacetylase HDAC3 is required for glucose-induced reduction of proteasomal degradation and augmentation of protein stability of CREBZF. Glucose induces rectal temperature and thermogenesis in white adipose of control mice, which is further potentiated in adipose-specific CREBZF knockout (CREBZF FKO) mice. During cold exposure, CREBZF FKO mice display enhanced thermogenic gene expression, browning of iWAT, and adaptive thermogenesis. CREBZF associates with PGC-1α to repress thermogenic gene expression. Expression levels of CREBZF are negatively correlated with UCP1 in human adipose tissues and increased in WAT of obese ob/ob mice, which may underscore the potential role of CREBZF in the development of compromised thermogenic capability under hyperglycemic conditions. Our results reveal an important mechanism of glucose sensing and thermogenic inactivation through reversible acetylation.


Subject(s)
Adipose Tissue, Brown , Glucose , Mice , Humans , Animals , Glucose/metabolism , Adipose Tissue, Brown/metabolism , Acetylation , Adipose Tissue, White/metabolism , Energy Metabolism , Obesity/genetics , Obesity/metabolism , Thermogenesis/genetics , Mice, Inbred C57BL , Basic-Leucine Zipper Transcription Factors/metabolism
8.
Mol Nutr Food Res ; 68(8): e2300840, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38593305

ABSTRACT

Fatty acid binding proteins (FABPs), such as FABP4 (aP2, A-FABP), are essential for cellular lipid regulation, membrane-protein interactions, and the modulation of metabolic and inflammatory pathways. FABP4, primarily expressed in adipocytes, monocytes, and macrophages, is integrated into signaling networks that influence immune responses and insulin activity. It has been linked to obesity, inflammation, lipid metabolism, insulin resistance, diabetes, cardiovascular disease, and cancer. Inhibition of FABP4 is emerging as a promising strategy for treating obesity-related conditions, particularly insulin resistance and diabetes. Elevated FABP4 levels in individuals with a BMI above 30 underscore its association with obesity. Furthermore, FABP4 levels are higher not only in the tissues but also in the blood, promoting the onset and development of various cancers. Understanding its broader role reveals involvement in the mechanisms underlying metabolic syndrome, contributing to various metabolic and inflammatory responses. While blocking FABP4 offers an alternative therapeutic approach, a comprehensive understanding of potential side effects is crucial before clinical use. This review aims to provide concise insights into FABP4, elucidating its mechanisms and potential therapeutic applications in obesity and associated disorders, contributing to innovative interventions against metabolic syndrome and obesity.


Subject(s)
Fatty Acid-Binding Proteins , Neoplasms , Obesity , Fatty Acid-Binding Proteins/metabolism , Humans , Obesity/metabolism , Animals , Insulin Resistance , Inflammation , Lipid Metabolism , Metabolic Syndrome/metabolism , Adipocytes/metabolism
9.
Diabetes ; 73(5): 649-652, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38640415

ABSTRACT

Body fat distribution is a predictor of metabolic health in obesity. In this Classics in Diabetes article, we revisit a 1985 Diabetes article by Swedish investigators Ohlson et al. This work was one of the first prospective population-based studies that established a relationship between abdominal adiposity and the risk for developing diabetes. Here, we discuss evolving concepts regarding the link between regional adiposity and diabetes and other chronic disorders. Moreover, we highlight fundamental questions that remain unresolved.


Subject(s)
Adiposity , Diabetes Mellitus, Type 2 , Humans , Risk Factors , Prospective Studies , Body Mass Index , Obesity/complications , Obesity/epidemiology , Obesity/metabolism
10.
Front Endocrinol (Lausanne) ; 15: 1361715, 2024.
Article in English | MEDLINE | ID: mdl-38654925

ABSTRACT

Introduction: Hair cortisol level has recently been identified as a promising marker for detecting long-term cortisol levels and a marker of hypothalamic-pituitary-adrenal cortex (HPA) axis activity. However, research on the association between obesity and an altered cortisol metabolism remains controversial. Objective: This study aimed to investigate the relationship between hair cortisol levels and overweight and obesity in participants from the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Methods: This was a cross-sectional study involving 2,499 participants from the second follow-up (visit 3, 2017-2019) attending research centers in Rio de Janeiro and Rio Grande do Sul states. Hair samples were collected, and cortisol levels were analyzed using enzyme-linked immunosorbent assay (ELISA) kits. Cortisol levels were classified as low (< 40 pg/mg), medium (40-128 pg/mg), or high (> 128 pg/mg). The participants were classified as eutrophic, overweight, or obese according to their weight (kg) and height (m2). Odds ratios (ORs) with 95% confidence intervals (95%CI) were estimated. Results: Of the 2499 individuals, 30% had eutrophic weight, 40% were overweight, and 30% were obese. Notably, cortisol levels gradually increased with increasing body weight. Among participants with high hair cortisol levels, 41.2% were classified as overweight and 34.2% as obese. Multinomial logistic regression analysis indicated that participants with high cortisol levels were 43% (OR =1.43; 95%CI: 1.02-2.03) more likely to be overweight and 72% (OR =1.72; 95%CI:1.20-2.47) more likely to be obese than participants with low hair cortisol levels. After adjustment for all covariates, high cortisol levels remained associated with obesity (OR = 1.54; 95%CI:1.02-2.31) and overweight (OR =1.33; 95%CI:0.91-1.94). Conclusion: In the ELSA-Brazil cohort, hair stress were positively associated with overweight and obesity. These results underscore the importance of considering stress and cortisol as potential factors in obesity prevention and intervention efforts, and highlight a novel aspect of the complex relationship between stress and obesity in the Brazilian population.


Subject(s)
Hair , Hydrocortisone , Obesity , Overweight , Humans , Hydrocortisone/metabolism , Hydrocortisone/analysis , Hair/chemistry , Hair/metabolism , Male , Female , Middle Aged , Obesity/metabolism , Obesity/epidemiology , Cross-Sectional Studies , Overweight/metabolism , Overweight/epidemiology , Brazil/epidemiology , Adult , Longitudinal Studies , Biomarkers/analysis , Biomarkers/metabolism , Aged , Cohort Studies
11.
Nat Commun ; 15(1): 3443, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658557

ABSTRACT

The hypothalamus contains a remarkable diversity of neurons that orchestrate behavioural and metabolic outputs in a highly plastic manner. Neuronal diversity is key to enabling hypothalamic functions and, according to the neuroscience dogma, it is predetermined during embryonic life. Here, by combining lineage tracing of hypothalamic pro-opiomelanocortin (Pomc) neurons with single-cell profiling approaches in adult male mice, we uncovered subpopulations of 'Ghost' neurons endowed with atypical molecular and functional identity. Compared to 'classical' Pomc neurons, Ghost neurons exhibit negligible Pomc expression and are 'invisible' to available neuroanatomical approaches and promoter-based reporter mice for studying Pomc biology. Ghost neuron numbers augment in diet-induced obese mice, independent of neurogenesis or cell death, but weight loss can reverse this shift. Our work challenges the notion of fixed, developmentally programmed neuronal identities in the mature hypothalamus and highlight the ability of specialised neurons to reversibly adapt their functional identity to adult-onset obesogenic stimuli.


Subject(s)
Hypothalamus , Neurons , Obesity , Pro-Opiomelanocortin , Single-Cell Analysis , Animals , Pro-Opiomelanocortin/metabolism , Pro-Opiomelanocortin/genetics , Neurons/metabolism , Obesity/metabolism , Obesity/pathology , Male , Mice , Hypothalamus/metabolism , Hypothalamus/cytology , Disease Models, Animal , Diet, High-Fat , Mice, Inbred C57BL , Mice, Transgenic , Neurogenesis , Mice, Obese
13.
Front Immunol ; 15: 1335651, 2024.
Article in English | MEDLINE | ID: mdl-38566998

ABSTRACT

Regulatory T cells (Tregs) residing in visceral adipose tissue (VAT) play a pivotal role in regulating tissue inflammation and metabolic dysfunction associated with obesity. However, the specific phenotypic and functional characteristics of Tregs in obese VAT, as well as the regulatory mechanisms shaping them, remain elusive. This study demonstrates that obesity selectively reduces Tregs in VAT, characterized by restrained proliferation, heightened PD-1 expression, and diminished ST2 expression. Additionally, obese VAT displays distinctive maturation of dendritic cells (DCs), marked by elevated expressions of MHC-II, CD86, and PD-L1, which are inversely correlated with VAT Tregs. In an in vitro co-culture experiment, only obese VAT DCs, not macrophages or DCs from subcutaneous adipose tissue (SAT) and spleen, result in decreased Treg differentiation and proliferation. Furthermore, Tregs differentiated by obese VAT DCs exhibit distinct characteristics resembling those of Tregs in obese VAT, such as reduced ST2 and IL-10 expression. Mechanistically, obesity lowers IL-33 production in VAT DCs, contributing to the diminished Treg differentiation. These findings collectively underscore the critical role of VAT DCs in modulating Treg generation and shaping Treg phenotype and function during obesity, potentially contributing to the regulation of VAT Treg populations.


Subject(s)
Interleukin-33 , T-Lymphocytes, Regulatory , Humans , T-Lymphocytes, Regulatory/metabolism , Interleukin-33/metabolism , Interleukin-1 Receptor-Like 1 Protein/metabolism , Obesity/metabolism , Dendritic Cells/metabolism
15.
Biosci Rep ; 44(4)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38577975

ABSTRACT

Since 1975, the incidence of obesity has increased to epidemic proportions, and the number of patients with obesity has quadrupled. Obesity is a major risk factor for developing other serious diseases, such as type 2 diabetes mellitus, hypertension, and cardiovascular diseases. Recent epidemiologic studies have defined obesity as a risk factor for the development of neurodegenerative diseases, such as Alzheimer's disease (AD) and other types of dementia. Despite all these serious comorbidities associated with obesity, there is still a lack of effective antiobesity treatment. Promising candidates for the treatment of obesity are anorexigenic neuropeptides, which are peptides produced by neurons in brain areas implicated in food intake regulation, such as the hypothalamus or the brainstem. These peptides efficiently reduce food intake and body weight. Moreover, because of the proven interconnection between obesity and the risk of developing AD, the potential neuroprotective effects of these two agents in animal models of neurodegeneration have been examined. The objective of this review was to explore anorexigenic neuropeptides produced and acting within the brain, emphasizing their potential not only for the treatment of obesity but also for the treatment of neurodegenerative disorders.


Subject(s)
Anti-Obesity Agents , Neuropeptides , Neuroprotective Agents , Obesity , Humans , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Animals , Obesity/drug therapy , Obesity/metabolism , Neuropeptides/metabolism , Neuropeptides/pharmacology , Neuropeptides/therapeutic use , Anti-Obesity Agents/pharmacology , Anti-Obesity Agents/therapeutic use , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/prevention & control , Hypothalamus/drug effects , Hypothalamus/metabolism , Hypothalamus/pathology , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/prevention & control , Brain/drug effects , Brain/metabolism , Brain/pathology , Eating/drug effects
16.
Life Sci ; 345: 122607, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38583857

ABSTRACT

Diabetes mellitus is a disorder characterised metabolic dysfunction that results in elevated glucose level in the bloodstream. Diabetes is of two types, type1 and type 2 diabetes. Obesity is considered as one of the major reasons intended for incidence of diabetes hence it turns out to be essential to study about the adipose tissue which is responsible for fat storage in body. Adipose tissues play significant role in maintaining the balance between energy stabilization and homeostasis. The three forms of adipose tissue are - White adipose tissue (WAT), Brown adipose tissue (BAT) and Beige adipose tissue (intermediate form). The amount of BAT gets reduced, and WAT starts to increase with the age. WAT when exposed to certain stimuli gets converted to BAT by the help of certain transcriptional regulators. The browning of WAT has been a matter of study to treat the metabolic disorders and to initiate the expenditure of energy. The three main regulators responsible for the browning of WAT are PRDM16, PPARγ and PGC-1α via various cellular and molecular mechanism. Presented review article includes the detailed elaborative aspect of genes and proteins involved in conversion of WAT to BAT.


Subject(s)
Adipose Tissue, Brown , Diabetes Mellitus, Type 2 , Humans , Adipose Tissue, Brown/metabolism , Diabetes Mellitus, Type 2/metabolism , Obesity/metabolism , Adiposity , Transcription Factors/metabolism , Adipose Tissue, White/metabolism , Thermogenesis/genetics
17.
Front Endocrinol (Lausanne) ; 15: 1344262, 2024.
Article in English | MEDLINE | ID: mdl-38559696

ABSTRACT

Obesity, a multifactorial disease with many complications, has become a global epidemic. Weight management, including dietary supplementation, has been confirmed to provide relevant health benefits. However, experimental evidence and mechanistic elucidation of dietary supplements in this regard are limited. Here, the weight loss efficacy of MHP, a commercial solid beverage consisting of mulberry leaf aqueous extract and Hippophae protein peptides, was evaluated in a high-fat high-fructose (HFF) diet-induced rat model of obesity. Body component analysis and histopathologic examination confirmed that MHP was effective to facilitate weight loss and adiposity decrease. Pathway enrichment analysis with differential metabolites generated by serum metabolomic profiling suggests that PPAR signal pathway was significantly altered when the rats were challenged by HFF diet but it was rectified after MHP intervention. RNA-Seq based transcriptome data also indicates that MHP intervention rectified the alterations of white adipose tissue mRNA expressions in HFF-induced obese rats. Integrated omics reveals that the efficacy of MHP against obesogenic adipogenesis was potentially associated with its regulation of PPARγ and FGFR1 signaling pathway. Collectively, our findings suggest that MHP could improve obesity, providing an insight into the use of MHP in body weight management.


Subject(s)
Hippophae , Morus , Rats , Animals , PPAR gamma/genetics , PPAR gamma/metabolism , Hippophae/metabolism , Morus/metabolism , Diet, High-Fat/adverse effects , Obesity/metabolism , Adipose Tissue, White/metabolism , Signal Transduction , Weight Loss
18.
Front Endocrinol (Lausanne) ; 15: 1348853, 2024.
Article in English | MEDLINE | ID: mdl-38562410

ABSTRACT

Introduction: Obesity, prevalent in approximately 80% of Qatar's adult population, increases the risk of complications like type 2 diabetes and cardiovascular diseases. Predictive biomarkers are crucial for preventive strategies. Salivary α-amylase activity (sAAa) inversely correlates with obesity and insulin resistance in adults and children. However, the connection between sAAa and cardiometabolic risk factors or chronic low-grade inflammation markers remains unclear. This study explores the association between serum sAAa and adiposity markers related to cardiovascular diseases, as well as markers indicative of chronic low-grade inflammation. Methods: Serum samples and clinical data of 1500 adult, non-diabetic, Overweight/Obese participants were obtained from Qatar Biobank (QBB). We quantified sAAa and C reactive protein (CRP) levels with an autoanalyzer. Cytokines, adipokines, and adiponectin of a subset of 228 samples were quantified using a bead-based multiplex assay. The associations between the sAAa and the adiposity indices and low-grade inflammatory protein CRP and multiple cytokines were assessed using Pearson's correlation and adjusted linear regression. Results: The mean age of the participants was 36 ± 10 years for both sexes of which 76.6% are women. Our analysis revealed a significant linear association between sAAa and adiposity-associated biomarkers, including body mass index ß -0.032 [95% CI -0.049 to -0.05], waist circumference ß -0.05 [95% CI -0.09 to -0.02], hip circumference ß -0.052 [95% CI -0.087 to -0.017], and HDL ß 0.002 [95% CI 0.001 to 0.004], albeit only in women. Additionally, sAAa demonstrated a significant positive association with adiponectin ß 0.007 [95% CI 0.001 to 0.01]while concurrently displaying significant negative associations with CRP ß -0.02 [95% CI -0.044 to -0.0001], TNF-α ß -0.105 [95% CI -0.207 to -0.004], IL-6 ß [95% CI -0.39 -0.75 to -0.04], and ghrelin ß -5.95 [95% CI -11.71 to -0.20], specifically within the female population. Conclusion: Our findings delineate significant associations between sAAa and markers indicative of cardiovascular disease risk and inflammation among overweight/obese adult Qatari females. Subsequent investigations are warranted to elucidate the nuances of these gender-specific associations comprehensively.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Salivary alpha-Amylases , Male , Adult , Child , Humans , Female , Middle Aged , Overweight , Adiponectin , Diabetes Mellitus, Type 2/complications , Cardiovascular Diseases/etiology , Cardiovascular Diseases/complications , Obesity/metabolism , Biomarkers , Inflammation/metabolism , Cytokines
19.
Physiol Rep ; 12(7): e15995, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38561245

ABSTRACT

Exercise has different effects on different tissues in the body, the sum of which may determine the response to exercise and the health benefits. In the present study, we aimed to investigate whether physical training regulates transcriptional network communites common to both skeletal muscle (SM) and subcutaneous adipose tissue (SAT). Eight such shared transcriptional communities were found in both tissues. Eighteen young overweight adults voluntarily participated in 7 weeks of combined strength and endurance training (five training sessions per week). Biopsies were taken from SM and SAT before and after training. Five of the network communities were regulated by training in SM but showed no change in SAT. One community involved in insulin- AMPK signaling and glucose utilization was upregulated in SM but downregulated in SAT. This diverging exercise regulation was confirmed in two independent studies and was also associated with BMI and diabetes in an independent cohort. Thus, the current finding is consistent with the differential responses of different tissues and suggests that body composition may influence the observed individual whole-body metabolic response to exercise training and help explain the observed attenuated whole-body insulin sensitivity after exercise training, even if it has significant effects on the exercising muscle.


Subject(s)
Insulin Resistance , Obesity , Adult , Humans , Obesity/metabolism , Muscle, Skeletal/metabolism , Exercise/physiology , Subcutaneous Fat/metabolism , Insulin/metabolism , Insulin Resistance/physiology , Gene Expression , Adipose Tissue/metabolism
20.
Physiol Rep ; 12(7): e15987, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38561248

ABSTRACT

Tricarboxylic acid cycle intermediates (TCAi) have been proposed to act as myokines that influence energy metabolism. We determined if 2-weeks of low-calorie diet with interval exercise (LCD + INT) would increase TCAi more than a low-calorie diet (LCD). Twenty-three women were randomized to 2-weeks of LCD (n = 12, 48.4 ± 2.5 years, 37.8 ± 1.5 kg/m2, ~1200 kcal/d) or LCD + INT (n = 11, 47.6 ± 4.3 years, 37.9 ± 2.3 kg/m2; 60 min/d supervised INT of 3 min 90% & 50% HRpeak). TCAi and amino acids (AA) were measured at 0 min of a 75 g OGTT, while glucose, insulin, and FFA were obtained at 0, 30, 60, 90, 120, and 180 min to assess total area under the curve (tAUC180min) and insulin resistance (IR; tAUC180min of Glucose × Insulin). Fuel use (indirect calorimetry) was also collected at 0, 60, 120, and 180 min as was fitness (VO2peak) and body composition (BodPod). Treatments reduced weight (p < 0.001), fasting RER (p = 0.01), and IR (p = 0.03), although LCD + INT increased VO2peak (p = 0.02) and maintained RER tAUC180min (p = 0.05) versus LCD. Treatments increased FFA tAUC180min (p = 0.005), cis-aconitate, isocitrate, and succinate (p ≤ 0.02), as well as reduced phenylalanine and tryptophan, cysteine (p ≤ 0.005). However, LCD + INT increased malate, citrate, α-ketoglutarate, and alanine more than LCD (p ≤ 0.04). Thus, INT enhanced LCD effects on some TCAi in women with obesity independent of IR.


Subject(s)
Insulin Resistance , Humans , Female , Caloric Restriction , Obesity/metabolism , Glucose/metabolism , Insulin
SELECTION OF CITATIONS
SEARCH DETAIL
...